

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all guestions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

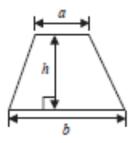
Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

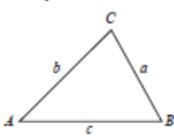
International GCSE Mathematics

Formulae sheet - Higher Tier

Arithmetic series


Sum to n terms, $S_n = \frac{n}{2} [2\alpha + (n-1)d]$

The quadratic equation

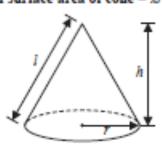

The solutions of $ax^2 + bx + c = 0$ where $a \neq 0$ are given by:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Area of trapezium = $\frac{1}{2}(a+b)h$

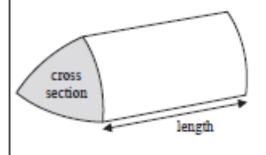
Trigonometry

In any triangle ABC

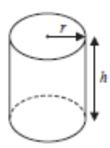

Sine Rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area of triangle =
$$\frac{1}{2}ab \sin C$$

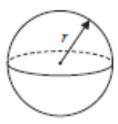

Volume of cone = $\frac{1}{3}\pi r^2 h$

Curved surface area of cone = $\pi r i$



Volume of prism

= area of cross section × length



Volume of cylinder = $\pi r^2 h$ Curved surface area of cylinder = $2\pi rh$

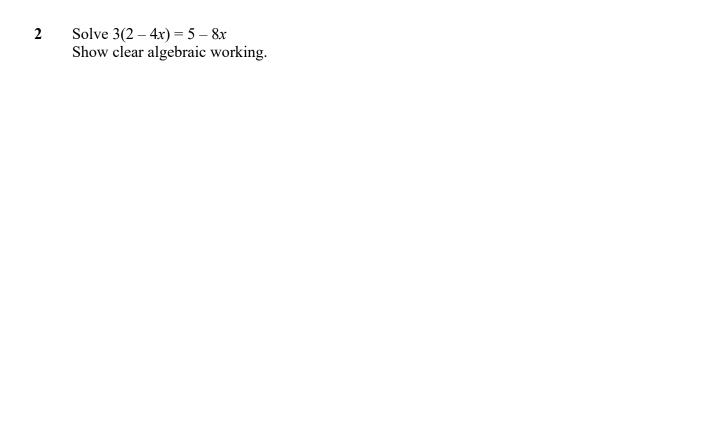
Volume of sphere = $\frac{4}{3}\pi r^3$

Surface area of sphere = $4\pi r^2$

Answer ALL TWENTY FOUR questions.

Write your answers in the spaces provided.

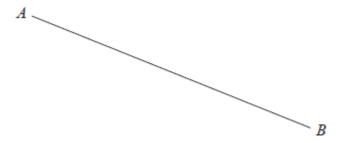
You must write down all the stages in your working.


1 80 students entered a dancing competition.

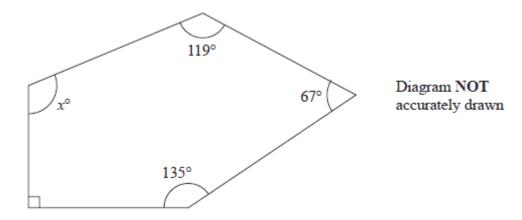
The table gives information about the length of time, in minutes, for which each student spent dancing.

Frequency	Time (m)
$0 < m \le 12$	11
$12 < m \le 24$	25
$24 < m \le 36$	23
$36 < m \le 48$	15
$48 < m \le 60$	6

Work out an estimate for the mean length of time the students spent dancing.


	minutes
•••••	IIIIIuucs
(Total for Question 1 is	4 marks)

x =


(Total for Question 2 is 3 marks)

3 Use ruler and compasses only to construct the perpendicular bisector of line *AB* You must show all your construction lines.

(Total for Question 3 is 2 marks)

4 The diagram shows a pentagon.

Work out the value of x

x	=	 • • • •	 ••••	 	 	

(Total for Question 4 is 3 marks)

In a box, there are only green sweets, orange sweets and yellow sweets.
There are 280 sweets in the box so that
the number of green sweets: the number of orange sweets $= 2:3$
and
the number of orange sweets: the number of yellow sweets $= 1:5$
Work out how many green sweets there are in the box.
(Total for Question 5 is 3 marks)

5

Shane bought a car.	
The amount Shane paid for the car was \$32 000	
Theresa also bought a car. To pay for this car, Theresa paid a deposit of \$18 000 tog payments of \$1160	ether with 14 monthly
Theresa paid more for her car than Shane paid for his car.	
(a) Work out how much more Theresa paid as a percenta	age of the amount Shane paid.
	%
Kylie bought a van.	(4)
After 1 year, the value of the van was \$39 865 During this year, the value of the van decreased by 15%	
(b) Work out the value of the van when Kylie bought it.	
	\$(3)
	(Total for Question 6 is 7 marks)

6

Type of book	comedy	romance	mystery	thriller
Probability	0.24	0.40	3 <i>x</i>	х

(Total for Question 7 is 4 marks)

8 The diagram shows a triangle *ABC* inside a semicircle.

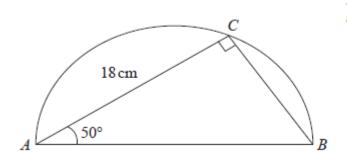


Diagram NOT accurately drawn

A, B and C are points on the semicircle.

AB is the diameter of the semicircle.

Angle
$$ACB = 90^{\circ}$$

Angle $BAC = 50^{\circ}$
 $AC = 18$ cm

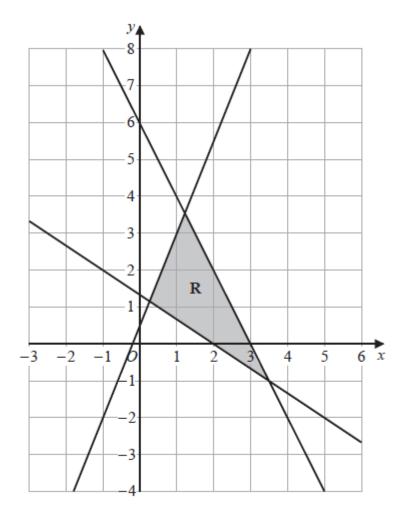
Work out the perimeter of the semicircle. Give your answer correct to 2 significant figures.

	(Total for Question 8 is 5 marks)
(a) Write 6.25×10^{-4} as an ordinary number.	
	(1)
(b) Work out $(2.4 \times 10^{12}) \div (9.6 \times 10^4)$ Give your answer in standard form.	
	(2) (Total for Question 9 is 3 marks

10 (a) Factorise $y^2 - 2y - 48$

(2)

(b) Write down the inequality shown on the number line



(1)

(c) Solve the inequality 7w + 6 > 12w + 14

(3)

(Total for Question 10 is 6 marks)

The region \mathbf{R} , shown shaded in the diagram, is bounded by the straight lines with equations

$$2x + y = 6$$

$$2y = 5x + 1$$

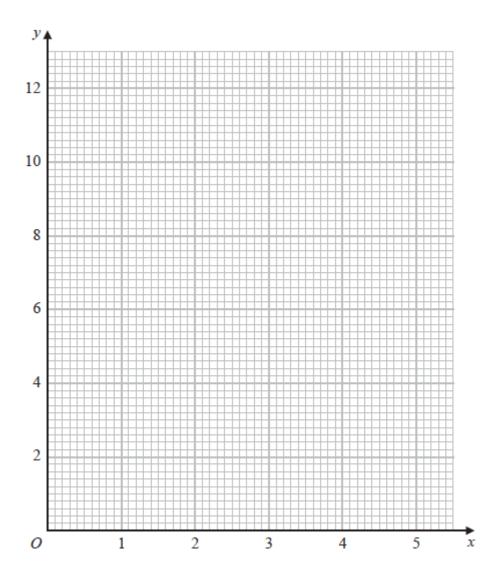
$$3y + 2x = 4$$

Write down the three inequalities that define ${\bf R}$

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

.....

(Total for Question 11 is 3 marks)


13	Show clear algebraic working.	
13	Expand and simplify $3x(2x-5)^2$	
		(1) (Total for Question 12 is 2 marks)
		$n = \dots$
	(b) Work out the value of n	
	$5^{-10} \div 5^{-4} = 5n$	(-)
		$m = \dots $ (1)
	(a) Work out the value of m	

14 (a) Complete the table of values for $y = \frac{2}{x} \left(5 - \frac{1}{x} \right)$

x	0.5	1	2	3	4	5
y	8			3.1	2.4	1.9

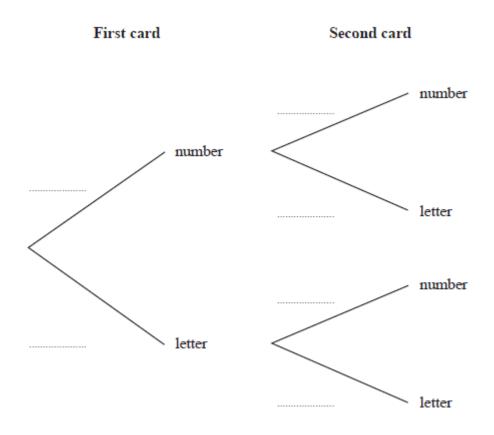
(1)

(b) On the grid, draw the graph of $y = \frac{2}{x} \left(5 - \frac{1}{x} \right)$ for $0.5 \le x \le 5$

(2)

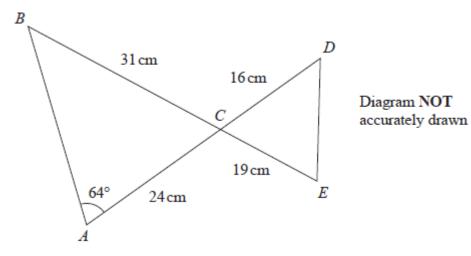
(Total for Question 14 is 3 marks)

15 Here are 9 cards. Each card has either a number on it or a letter on it.



Tomas is playing a game.

Tomas takes at random one of the cards and keeps it.


Tomas then takes at random another card and keeps it.

(a) Complete the probability tree diagram.

b) Work out the probability that each of the two cards has a number on it.
(c) Work out the probability that there will be one card with a number on it and one card with a letter on it.

Here is a shape formed from two triangles *ABC* and *CDE ACD* and *BCE* are straight lines.

$$AC = 24 \text{ cm}$$
 $BC = 31 \text{ cm}$ $CE = 19 \text{ cm}$ $CD = 16 \text{ cm}$

Angle
$$BAC = 64^{\circ}$$

Work out the length of DE

Give your answer correct to 3 significant figures.

	(Total for Question 16 is 5 ma
y is inversely proportional to \sqrt{x}	
$y = c^4$ when $x = c^2$ where c is a positive constant.	
Find a formula for y in terms of x and c Give your answer in its simplest form.	

18	The function f is such that $f(x) = \frac{k}{x}$ where $x \neq 0$ and k is an integer.	
	(a) Express the inverse function f^{-1} in the form $f^{-1}(x) =$	
	$f^{-1}(x) = \dots$	(1)
	The function g is such that $g(x) = 2 - 3x^4$ where $x \neq 0$,
	The function h is such that $h(x) = \frac{3x}{2-x}$ where $x \neq 2$	
	(b) (i) Find $g(-2)$	
		(1)
	(ii) Express the composite function hg in the form $hg(x) =$ Give your answer in its simplest form.	

(Total for Question 18 is 4 marks)

 $hg(x) = \dots$

(2)

19 The acceleration, a, of an object is given by

$$a = \frac{v - u}{t}$$

where

v = 45.23 correct to 2 decimal places

u = 5.12 correct to 2 decimal places

t = 8.5 correct to 2 significant figures

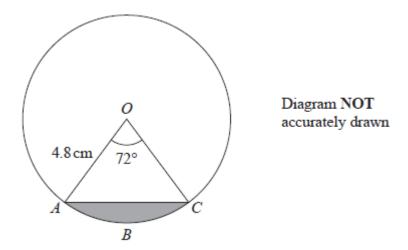
By considering bounds, work out the value of a to a suitable degree of accuracy. Show your working clearly and give a reason for your answer.

a =

(Total for Question 19 is 5 marks)

20 The radius of a right circular cylinder is x cm.

The height of the cylinder is
$$\left(\frac{800}{\pi x} - x\right)$$
 cm.


The volume of the cylinder is $V \text{ cm}^3$

Find the maximum value of V

Give your answer correct to the nearest whole number.

	(Total for Question 20 is 5 mar

21 The diagram shows the cross section of a circular water pipe.

OABC is a sector of the circle, centre O

The shaded region in the diagram represents the water flowing in the pipe.

The water flows at 14 cm/s in the pipe.

Work out the volume of water that has flowed through the pipe in 3 minutes. Give your answer in cm3 correct to 3 significant figures.

The first term of an arithmetic series is (2t + 1) where t > 0The *n*th term of this arithmetic series is (14t - 5)

The common difference of the series is 3

The sum of the first n terms of the series can be written as $p(qt-1)^r$ where p, q and r are integers.

Find the value of p, the value of q and the value of r Show clear algebraic working.

n =	a = r =
<i>P</i>	q =

23 ABCD is a kite.

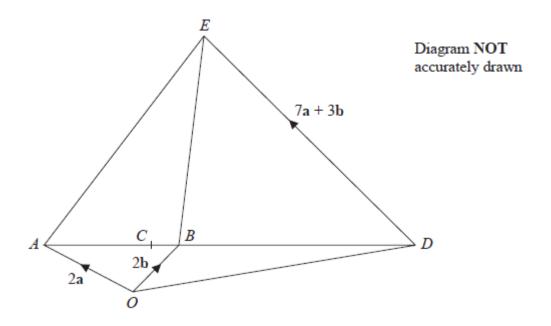
$$AB = AD$$
 and $CB = CD$

The point B has coordinates (k, 1) where k is a negative constant.

The point D has coordinates (8, 7)

The straight line L passes through the points B and D

The straight line L is parallel to the line with equation 5y - 3x = 6


Find an equation of AC

Give your answer in the form px + qy = r where p, q and r are integers.

Show your working clearly.

				•••••
	•	(Total for Ques	stion 23 is 6 ma	arks)

24 *OAED* is a quadrilateral.

$$\overrightarrow{OA} = 2\mathbf{a}$$
 $\overrightarrow{OB} = 2\mathbf{b}$ $\overrightarrow{DE} = 7\mathbf{a} + 3\mathbf{b}$

AB:BD=1:2

The point C on AB is such that OCE is a straight line.

Use a vector method to find the ratio of OC: CE

.....

(Total for Question 24 is 5 marks)

TOTAL FOR PAPER IS 100 MARKS